連続可変低周波発振器の開発と公開(オープンソース)

~PCを低周波発振器として使う~

高木伸雄

北海道札幌北高等学校定時制

【要約】PCから低周波音を連続的に発振することによって、簡単に様々な物理実験を行うことができる。いろいろ調べたけれど連続的に変化させる発振器がなかったので Microsoft Visual C#を使って開発した。オープンソースとして公開するので自由に改変することが出来る。 【キーワード】連続可変低周波発振、PC、物理実験、公開、他のソフトウェアとの連携

1.動機

物理実験装置として、電子部品を組み立て た低周波発振器を造って増幅器につないでい くつかの実験に使ってきたが、コンピュータ の中で低周波を発振させるとより簡便で利用 しやすいものになると考えた。2年半ほど前 からインターネットを使っていろいろ探して みたが、周波数を入力してその音を出すソフ トウェアにはすばらしいもの(野口博司氏作

DualOscillator 等)があったが、連続的に変 化するものはなかった。詳しく調べたところ、 Microsoft Visual C# と NAudio (CodePlex で開発 されている .NET 向けの音声操作ライブラ リ)で作れそうなことがわかった。

(参考になった記事: MSDN マガジン February 2010 > WPF アプリケーションでの音 の生成 Charles Petzold URL:

http://msdn.microsoft.com/ja-jp/magazine/ee309883.aspx)

その後、時間をかけて少しずつ作り、何と か満足のいくものが 2011 年 10 月にできた。 それを札幌北高全日制の物理担当の今野博行 先生(現在函館稜北高校)、中道洋友先生、 新年度に入って福士公一朗先生にチェックし てもらったところ、いくつかの機能を追加し てより広く使えるソフトウェアに改良すると 良いという意見をいただいた。その方向で作 り直して、2012 年 6 月に完成した。

最初、自分が行う実験のために作ったもの であるが、機能を追加していき、普通の実験 を行うには十分使えるものになったので公開 して、物理関係の先生方に使ってもらおうと 考えた。学校に発振器がない場合でも簡単に 実験を行うことができるようになると思う。

発振器全体

グラフ領域非表示状態

<u>2.機</u>能

 周波数が連続的に変化する低周波を Windows コンピュータ内で発振する。(周波 数範囲は1~2万2千ヘルツの正弦波) ②波形をリアルタイムでグラフ表示させる。 ③ステレオ発振させることが出来る。左右の 波の位相(Phase)を変化させる機能もあり、 そのグラフ表示も可能である。

④うなり現象を耳で聞き、グラフで合成波を 確認できる。

⑤上記の機能及び他のソフトウェアとの連携 による様々な実験が出来る。

⑥グラフ領域を非表示に出来る。他のソフト ウェアと連携して使うときに便利である。

3. 使用方法

A:スライダーを動かして使う場合(モノラ ル音)

①スライダーを動かすと、数値(周波数)が1 から 2200 まで連続的に変化する。ボタンを 押すことによって周波数を 0.1 ずつ変化させ ることが出来る。(レンジ切替で 10 倍)

②スライダー上でマウスクリックまたは

PAGE UP ・ PAGE DOWN キーで周波数が10 移動、方向キーで1移動する。

③発振ボタンを押すと表示されている周波数の音を発振する。停止ボタンを押すと止まる。
④発振中にスライダーを動かすと連続的に音が変化する。

⑤「大」「中」「小」の音量ボタンがある。 初期設定は「中」。ボタンを押すと音量がす ぐに変わる。

B:周波数値を入力して使う場合(ステレオ音)

①テキストボックスに周波数値を入力し、発振ボタンを押すとその音が鳴る。周波数値は整数にする。

②音量については上記と同じ。

 ③左右の音の位相差を設定できる。テキスト ボックスに整数値(単位は度)を入力する。
位相差は右の音に反映する。

※上記のAによる発振と、Bによる発振は同時に行うことが出来る。

<u>C;波のグラフ表示</u> (それぞれにボタン・ バーがある) ①モノラル波の表示 ②左右のステレオ波の表示(位相差は右の音に加えてある)

③モノラル波とステレオ波(左)の合成波の 表示

④ フルスケール時間の変更バー (100ms ~ 1ms)

⑤合成波の移動バー(合成波表示時のみ動作)

4. いくつかの実験例

(1) 音波のうなり及びグラフ図示

周波数の異なる音をスライダー入力・数値 入力で設定する。それぞれを発振してうなり 音を聞く。また、その様子をグラフ表示する。

(2)うなりを利用して、周波数未知の音叉 の周波数、蛍光管から出る光の周波数の測定 音叉と発振器からの音を同時に出し、発振 器の周波数を連続的に変えてうなりが無くな る周波数を調べる。音叉の音をサウンドレコ ーダー等で録音し、PC オシロスコープと連携して 調べると 0.1Hz まで測定できる。

蛍光灯の光を光電池に当て、増幅器とスピ ーカーを使って音に変える。PCから発振器 を使って連続変化させた音を出し、うなり現 象を利用して交流の周波数を調べる。(蛍光 灯からの光の周波数については、太陽電池からの電流を PC オシロスコープに入れて測定する方 法もある)

(3) 弦の定常波

上の装置を作成して使う。左はフイルムケ ースをのり付けしたスピーカー。その右はキ ットで作った簡易増幅器。一番右はステレオ ジャックと端子3つをつないだ部品(これは 大変便利である。300円ほどで出来る)

PCから連続的に変化する信号を増幅器で 増幅し、フイルムケースをのり付けしたスピ ーカーから音を出す。フイルムケースを一定 の張力を与えた弦に接触させて弦に振動を伝 え、ある周波数の時に定常波が出来る様子を 観察する。

(4)左右の音の位相差による干渉の変化(高速リアルタイム スペクトラムアナライザー WaveSpectra 使用

URL : http://www.ne.jp/asahi/fa/efu/soft/ws/ws.html)

下図に示したようにPCから発振器の数値 入力で適当な数値を入力し、スピーカーから ステレオ音を出す。最初位相差を0度に設定 し、上記 WaveSpectra でマイクロフォンの音 を表示する。次に位相差を180度に設定して 同様に測定する。耳で聞いても干渉による音 の減衰は確認できるが、WaveSpectra で数値的 にも確認できる。インジケーターの数値の単 位は dB。

上:位相差0度、下:位相差180度

(5)リサジュー

発振器からステレオで音を出す。位相を例 えば 45 度にする。上記の WaveSpectra を起動 する。設定をリサジューにして録音ボタンを 押すと下図のような表示が得られる。

P C でステレオ録音する場合、録音コント ロールでステレオミキサーを選択する必要が ある。インターネットで「P C のステレオ録 音」等で検索するとわかりやすいH P が出て くる。次のところもわかりやすい。

URL: http://kukulu.erinn.biz/live/wiki/index.php?サウンド入力の設定

右のように、外部の オシロスコープにつな いでリサジューを表示 させることができるが、 PC内でソフトウェア

を連携させるとより簡便に行うことが出来る。

(6) グラドニ図形

実験例(3)の装置を使い、PCにつない だ増幅器にスピーカーをつなぐ。スピーカー にのり付けされているフイルムケースを物体 に押し当てて振動させる。周波数を変えてい くとある周波数の時に美しいクラドニ図形が 得られる。下図左はレコード盤に出来た図形、 周波数 326Hz。下図右はプラスチックケース に出来た図形、周波数 362Hz。食卓塩を振り かけて図形を得た。

<u>5. ソフトウェアの公開について</u>

このソフトウェアを、物理関係の先生方に 使っていただけたら作った甲斐があり、先生 方にも喜んでもらえるのではないかと考えて いる。

私はこのようなソフトウェアがあればよい と考えて作ったわけであるが、多くの物理関 係の先生方もこのようなソフトウェアの必要 性については同じように考えると思う。

ソースコード等も含めて公開し、自由に使 ってもらい、改造したい方には自由に改造し てもらおうと考えている。理科部等の生徒で も、このような機能を付け足したい等の動機 があれば、環境を整えてあげて、少し指導す ることによって簡単に改造できるようになる と思う。(例えば、ステレオ出力の左右の周 波数を独立させる等)

リナックスがオープンソースであることに よって非常にすばらしいものに発展した。そ れ以外にもオープンソースによって集団的に 改良・発展してきたものは沢山ある。理科教 員が個別に作っている小さなソフトウェアで も、オープンソースにすることによって集団 的に検討・改良が出来るようになる。今は開 発言語を簡単に(C # 等は無料)手に入れる ことが出来る時代になった。きっと、結構沢 山の先生方が授業を進めていくために自分で 小さなソフトウェアを作っていると思う。そ のような、理科の先生方がちょっとした工夫 を行うために作ったソフトウェアを、出来れ ばオープンソースにして、北理研や理科教育 センターのどこかにおいて、先生方が集団的 に改良していくと、お互いの刺激にもなり、 理科教育の発展にも寄与するのではないかと 考えている。

<u>6.開発環境</u>

- マシン Windows XP
- 開発言語 Microsoft Visual C# 2010 Express
- その他 NAudio (CodePlex 開発のライブラリ) Microsoft .NET Framework4.0

動作OS Windows XP、vista、7

注意点

連続可変低周波発振器.exe と NAudio.dll は同じフォルダに入れて使う。

.NET Framework がインストールされていない と動作しないので、PCに入っていなければ インストールして使用する。

(C#も NET Framework も NAudio.dll も無料でダ ウンロード出来る)

追 記

5月末に調べごとをしていたところ偶然、 「理科ネットワーク 音・波動デジタル教材 /音の実験」のところに「振動数と音階(発 音:はつね)」という同じようなソフトウェ アを見つけました。大変素晴らしいもので、 私のソフトウェアを発表する必要はないので はないかと考えましたが、「私のソフトウェ アにも使いやすい機能がついている、ソース コード等を公開して誰でも自分に合うように 改造できる」ということから、発表・公開の 意義があると考えました。

PCをオシロスコープとして使う素晴らし いソフトウェアがあります。私のソフトウェ アと組み合わせて使うことが出来ます。 神 奈 川 県 立 総 合 教 育 セ ン タ ー

http://www.edu-ctr.pref.kanagawa.jp/it/oscillo/oscillo.htm

その他にもいくつか使いやすいソフトウェ アがあります。 P C を活用すると実験環境が 広がります。

ご意見・連絡等があれば下記のメールアド レス(高木)にお願いいたします。

xmrcj458@ybb.ne.jp